Mössbauer Study of Matrix Isolated Iron Fluorides Produced by a Reaction of Laser-Evaporated Iron Atom and Sulfur Hexafluoride

Yasuhiro Yamada and Keiichi Katsumata

Department of Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

(Received April 4, 2000; CL-000312)

The reaction-products of laser-evaporated iron atoms with sulfur hexafluoride SF_6 were isolated in a low-temperature matrix and their Mössbauer spectra obtained. Fe₂F₆ molecules were produced in a pure SF_6 matrix, whereas Fe F_3 and Fe₂F₄ were also produced in a diluted SF_{6}/Ar matrix. A molecular orbital calculation supports the assignment of the species.

Laser-evaporated iron atoms are translationally and electronically high in energy and react with various gases to produce novel species that are not obtainable under normal conditions. We have studied the reaction of laser-evaporated iron atoms with oxygen or nitrogen molecules, and the novel iron oxide or iron nitride species trapped in low-temperature matrices were investigated by means of Mössbauer and infrared spectrscopies.^{1,2} In this study, we investigate the reaction of laser-evaporated iron atoms with SF_6 gas. Though SF_6 gas is generally inert and stable, it releases F atoms by the reaction of highly-energetic iron atoms to produce iron fluoride particles. Mössbauer spectroscopy provides useful information about the electronic structures, such as valence and spin states of the novel iron fluoride species trapped in low-temperature matrices.

Details of the experimental setup are described elsewhere.¹ Briefly, laser-evaporated iron atoms were produced by the pulsed laser light (248 nm, 200 mJ/pulse, 20 ns) of a KrF excimer laser (Lambda Physik EMG101MSC) focused on a 57Fe iron block. The iron atoms were mixed with the matrix gas that was introduced by a magnetic pulse valve and condensed onto an aluminum plate cooled to 17 K using a closed cycle helium refrigerator. Mössbauer spectra were measured in a transmission geometry using a 57Co/Rh source. All the Mössbauer and infrared measurements were performed at 17 K.

In Figure 1, the Mössbauer spectrum of laser-evaporated

Figure 1. Mössbauer spectrum at 17 K of laser-evaporated iron atoms condensed in SF_6 matrix. Molar ratio is $^{57}Fe/SF_6=1/300$.

iron atoms condensed with pure SF_6 gas on an Al plate (17K) is shown. The molar ratio of the sample was ${}^{57}Fe/SF_6 = 1/300$. A set of doublet absorption peaks (species **A**) was observed as the main product trapped in the SF_6 matrix, as well as a sextet set which has the same Mössbauer parameters as α -iron assigned to large metallic iron particles produced by the laser-ablation. Neither Fe atoms nor $Fe₂$ dimers were observed in the spectrum, indicating that most of the small Fe species reacted with $SF₆$ to form species **A**. The Mössbauer isomer shift δ of species **A** suggests that it is a trivalent iron species. The highly energetic iron atom breaks the $SF₆$ gas molecule to produce F atoms in the gas phase and to form iron fluorides that are trapped in the low-temperature SF_6 matrix. The temperature of this sample was increased to 60 K for 24 h and then lowered to 17 K in order to observe the effects of annealing. No change in the Mössbauer spectrum was observed, indicating that species **A** was stable even at 60 K. The Mössbauer parameters observed in this study, as well as other related iron–halide species vaporized by resistive heating reported in literature,⁴ are summarized in Table 1. Species **A** has a larger ∆Eq than that of amorphous $FeF₃$ produced by the reaction of an Fe atom and HF reported in the literature³ ($\delta = 0.45$ mm/s, $\Delta E_q = 0.60$ mm/s at 77 K), and thus it should be a small particle rather than amorphous. As vapor produced by the sublimation of solid $FeCl₃$ contains dimeric Fe₂Cl₆, dimeric Fe₂F₆ may also be stable in the gas phase. We assigned species **A** as $Fe₂F₆$ by analogy to $Fe₂Cl₆$.

Table 1. Mössbauer parameters at 17 K of iron fluoride species observed in this study and other iron halide reported in literature, and calculated electronic properties using HF/6-311G

		Observed Mössbauer		Calculated	
		parameters		electronic properties	
		$mm s-1$		a. u.	
Species		δ	ΔE_a	$\rho(0)$	EFG
				-1500	
Fe_2F_6	A	0.53 ± 0.10	1.02 ± 0.10	92.03	1.87
FeF,	B	0.68 ± 0.10	2.86 ± 0.10	92.44	2.89
Fe ₂ F ₄	C	1.31 ± 0.10	2.72 ± 0.10	90.61	3.66
FeF,				91.13	0.43
FeCl,		$0.88 \pm 0.02^{\circ}$	$0.63 \pm 0.02^{\circ}$	91.32	0.73
Fe,Cl _a		$1.10 \pm 0.05^{\circ}$	2.80 ± 0.10^a	90.90	3.05
FeBr,		0.81 ± 0.02^a	0.86 ± 0.02^a	91.67	0.90
Fe ₂ Br ₄		$0.99 \pm 0.05^{\circ}$	3.10 ± 0.10^a	91.25	2.97
Fe ₂ Cl ₆		0.35 ± 0.01^a	2.00 ± 0.01^a	92.91	1.32

^a Reported at 5 K in the literature.⁴

We also performed experiments using a diluted matrix gas: the $SF₆$ gas was diluted in Ar gas and introduced with laserevaporated iron atoms to form a matrix-isolated sample. The Mössbauer spectrum of the sample is shown in Figure 2a. The molar ratio of the sample was ${}^{57}Fe/SF_{6}/Ar = 1/1/480$. Species

Figure 2. Mössbauer spectrum at 17 K of laser-evaporated iron atoms condensed with SF_6 in Ar matrix (a), and the spectrum obtained after annealing at 30 K for 30 h (b). Molar ratio is ${}^{57}Fe/SF_6/Ar=1/1/480$.

A, as well as two other species (species **B** and species **C**), can be observed in the spectrum. Their Mössbauer isomer shifts δ suggest that species **B** is a trivalent iron species and species **C** is a high-spin divalent iron species. This sample was annealed at 30 K for 30 h and the Mössbauer spectrum again recorded at 17 K (Figure 2b). The intensity of species **B** decreased and that of species **A** increased, indicating that species **B** migrates in the matrix to form species **A** on annealing. The intensity of species **C** did not change. Species **B** was assigned as monomeric FeF₃, because it has a large ΔE_q value and formed $Fe₂F₆$ on annealing. When iron atoms and $SF₆$ are diluted in Ar, iron atoms have the opportunity to produce unstable monomeric FeF_3 (species **B**). For the divalent species, only one species **C** was observed in the experiment, and it was stable on annealing. In the diluted SF_{6}/Ar matrix, the concentration of released F atoms was low, and therefore divalent species were produced. Species **C** may be FeF₂ or Fe₂F₄ because it is produced under the condition in which \overline{FeF}_3 and \overline{Fe}_2F_6 are produced. The Mössbauer spectra of monomeric $FeCl₂$ or $FeBr₂$ in low-temperature matrices have been reported to possess small quadruple splittings⁴ (Table 1) and thus species C may not be monomeric FeF₂. Though solid FeF₂ has a large quadrupole splitting (ΔE_q = 2.68 mm/s), species \overline{C} did not show magnetic splitting at 17 \overrightarrow{K} and is not a large particle: the Néel temperature of solid FeF₂ is 78 K.⁶ We assigned species C as $Fe₂F₄$ from comparison with reported $Fe₂Cl₄$ and $Fe₂Br₄$, which are bridged-structured dimers. No sulfide species was found in this study.

We performed ab initio molecular orbital calculations of the species using the Gaussian 98⁷ program with HF/6-311G (Figure 3). We previously reported molecular orbital calculations of Mössbauer parameters for iron species isolated in lowtemperature matrices,⁵ and the procedure used in the present study was similar to that reported previously. The calculated $\rho(0)$ and $|EFG|$ at an iron nucleus should have a linear correlation with observed δ and ΔE_q , respectively. The calculated $ρ(0)$ and |EFG| of the iron halide species are summarized in Table 1. The EFG value of the monomeric Fe F_3 was calculated to be large, which is in agreement with the observed large ΔE_q value. Molecular orbital calculations suggest that dimeric \vec{Fe}_2F_6 is more stable than monomeric FeF₃ by 67.8 kcal/mol from the comparison of ground states energies. The calculated EFG for monomeric FeF_2 was too small to interpret the observed species **C**; species **C** proved to be $Fe₂F₄$ with bridged F atoms. We obtained a good correlation of δ–ρ(0) and ΔE_{a} –EFG, listed in Table 1, which supports the assignments of species **A**, **B**, and **C**.

References

- **1** Y. Yamada, H. Sumino, Y. Okamura, H. Shimasaki, and T. Tominaga, *Appl. Radiat. and Isot.*, **52**, 49 (2000).
- **2** Y. Yamada and T. Tominaga, *Hyperfine Interact.,* **112**, 189 (1998).
- **3** S. F. Parker, C. H. F. Peden, P. H. Barrett, and R. G. Pearson, *J. Am. Chem. Soc.*, **106**, 1304 (1984).
- **4** F. J. Litterst, A. Schichl, and G. M. Kalvius, *Chem. Phys*., **28**, 89 (1978).
- **5** Y. Yamada and T. Tominaga, *Radiochim. Acta*, **80**, 163 (1998).
- **6** G. K. Wertheim and D. N. E. Buchanan, *Phys. Rev.*, **161**, 478 (1967).
- **7** Gaussian 98, A.6., Gaussian Inc., Pittsburgh PA, U.S.A., 1998.